{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "E5lxfqWiPpsB"
},
"source": [
"# **CT影像 肝臟腫瘤分割**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gjGx9gd8Wz3f"
},
"source": [
"## 資料集中附有 images, labels 兩個影像資料夾(.npy檔),images 中影像名稱對應到 labels 中同名的檔案 (如 images/001.npy 對應到 labels/001.npy 的 mask)。"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nLDCLxSop4Nf"
},
"source": [
"## images 資料夾中為 CT 之原始影像 (大小為512x512),單位為 HU (Hounsfield Unit),介於 -3024 至 3024 之間。"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BwX0AQOpYeck"
},
"source": [
"## labels 資料夾中之數字矩陣 (大小為512x512) 上有 0,1,2 三種數值,分別代表**背景** (background) 、**肝臟組織** (liver, 下右圖藍色) 以及**肝臟腫瘤** (liver tumor, 下右圖粉紅色) 三種類別。"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0LW2filSY1dQ"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9_KO6Oq-b-AZ"
},
"source": [
"## **題目1、**\n",
"### 請嘗試建立一個分割 **肝臟組織** 與 **肝臟腫瘤** 區域之模型,另以文字說明使用的 **模型結構** 與 **參數** 選擇。\n",
"###有做 **影像前處理** 也請一併寫入。\n",
"
\n",
"## **題目2、**\n",
"### 請用訓練後之模型預測驗證集資料,並以數值說明模型針對 **肝臟組織** 及 **肝臟腫瘤** 分割之個別效能。\n",
"### 指標不限,請簡述選擇原因。\n",
"
\n",
"## 備註:\n",
"1. 若影像過大無法正常訓練模型,可自行縮小影像。\n",
"2. 訓練集及驗證集請自行分割,比例為訓練集:驗證集 = 80:20。"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Dg0B1_BrrqWS"
},
"source": [
"# **程式碼**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "57rU2Br2WyhT"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "LiverCT.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
}
},
"nbformat": 4,
"nbformat_minor": 1
}