mod service file structure
This commit is contained in:
parent
3c8580f0f4
commit
0327ebf1f4
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 2382b7a39c064e7b9b1465cfd84140a3
|
||||
run_id: 24469fc083d6470a9cad7f17a6eeeea0
|
||||
utc_time_created: '2023-02-21 05:57:41.973454'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: cls_model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: e40643f3e1b9481896e1ae6ed30e8654
|
||||
run_id: 2820b379bfc945358bfd516e5577846c
|
||||
utc_time_created: '2023-02-21 05:33:10.779919'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: models
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: faf1bec9ecb64581b22a0b8e09a9cca8
|
||||
run_id: 3ef01a1e3e3d4ba2be705da789bbb8e1
|
||||
utc_time_created: '2023-02-21 05:07:17.344052'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,82 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model and log the loss
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 18b69aa38c064c579c9b465d7a826081
|
||||
run_id: 410d85525e5f4cfe9839a432d35f9ad2
|
||||
utc_time_created: '2023-02-22 00:42:48.668457'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: cls_model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: a0ecc970cadb47a9b839283e9514732d
|
||||
run_id: 63c7363339e042f4848d9041ba8deb82
|
||||
utc_time_created: '2023-02-21 05:37:55.904472'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: models
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 4ebe94bd0249452a90b3497d3b00a1c3
|
||||
run_id: 6845ef0d54024cb3bdb32050f6a46fea
|
||||
utc_time_created: '2023-02-21 05:25:14.020335'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: models
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 8cd1e70114e548ea8d9bfb1bf468e285
|
||||
run_id: 68e8a3cbbafa46538ebb8a60d80f185d
|
||||
utc_time_created: '2023-02-21 05:05:46.624814'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: models
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: dd1b1e3a6b5f4274a5690a8843751ff3
|
||||
run_id: 8ba27f225a7442be8816977c2077c510
|
||||
utc_time_created: '2023-02-21 05:05:04.660670'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 957e2f6e4fd048c99aee3150c73c4078
|
||||
run_id: c4fd84a025e1474d87cdc2919874b88c
|
||||
utc_time_created: '2023-02-22 00:41:33.282088'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,82 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model and log the loss
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: cls_model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: aaa800b217da4dd0b8f17e8dbfdc5c45
|
||||
run_id: f1320882f24c4f489cbf85159627eaf8
|
||||
utc_time_created: '2023-02-21 05:34:08.242864'
|
|
@ -1,10 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,3 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
|
@ -1,83 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('/mlflow_testing')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: ff8b845d6a174ffabfc49a18673c6c04
|
||||
run_id: c248a4299f97423987a9496a2241ab1a
|
||||
utc_time_created: '2023-02-22 01:10:55.971443'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,83 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('mlflow_testing')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 27a96ad04f5a4578a3e1302500ad9a11
|
||||
run_id: b7d7395b6b53404497f7656b07b71bf8
|
||||
utc_time_created: '2023-02-22 01:11:36.809812'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,83 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('mlflow_testing')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 2625ea164ff248c194686ed5afb9a510
|
||||
run_id: c293e8294f4f46adacd21465be08c608
|
||||
utc_time_created: '2023-02-22 01:11:28.646127'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,83 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('mlflow_testing')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 2ee49fdb3ec647a58b1235498b186722
|
||||
run_id: d548729629634031a93a46d6dab8b7da
|
||||
utc_time_created: '2023-02-22 01:11:33.149151'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,83 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
from tqdm import tqdm
|
||||
import mlflow
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(10, 5)
|
||||
self.fc2 = nn.Linear(5, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for i, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=i)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(10), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=10)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('train_fortune_predict_model')
|
||||
|
||||
# start the MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model')
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,16 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 75aa23c5bb33452c978feeeffcdcb393
|
||||
run_id: 0be79b1f3f7d480a9c7f497312887a37
|
||||
utc_time_created: '2023-02-22 01:12:26.682417'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
mlflow.pytorch.pickle_module
|
|
@ -1,7 +0,0 @@
|
|||
python: 3.10.9
|
||||
build_dependencies:
|
||||
- pip==23.0.1
|
||||
- setuptools==67.3.2
|
||||
- wheel==0.38.4
|
||||
dependencies:
|
||||
- -r requirements.txt
|
|
@ -1,4 +0,0 @@
|
|||
mlflow
|
||||
cloudpickle==2.2.1
|
||||
torch==1.13.1
|
||||
tqdm==4.64.1
|
|
@ -1,98 +0,0 @@
|
|||
# train.py
|
||||
#
|
||||
# author: deng
|
||||
# date : 20230221
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.optim import SGD
|
||||
import mlflow
|
||||
from mlflow.models.signature import ModelSignature
|
||||
from mlflow.types.schema import Schema, ColSpec
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
""" define a simple neural network model """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Linear(5, 3)
|
||||
self.fc2 = nn.Linear(3, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, dataloader, criterion, optimizer, epochs):
|
||||
""" define the training function """
|
||||
for epoch in tqdm(range(epochs), 'Epochs'):
|
||||
|
||||
for batch, (inputs, labels) in enumerate(dataloader):
|
||||
|
||||
# forwarding
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# update gradient
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# log loss
|
||||
mlflow.log_metric('train_loss', loss.item(), step=epoch)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# set hyper parameters
|
||||
learning_rate = 1e-2
|
||||
batch_size = 10
|
||||
epochs = 20
|
||||
|
||||
# create a dataloader with fake data
|
||||
dataloader = [(torch.randn(5), torch.randn(1)) for _ in range(100)]
|
||||
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=batch_size)
|
||||
|
||||
# create the model, criterion, and optimizer
|
||||
model = Net()
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# set the tracking URI to the model registry
|
||||
mlflow.set_tracking_uri('http://127.0.0.1:5000')
|
||||
mlflow.set_experiment('train_fortune_predict_model')
|
||||
|
||||
# start a new MLflow run
|
||||
with mlflow.start_run():
|
||||
|
||||
# train the model
|
||||
loss = train(model, dataloader, criterion, optimizer, epochs)
|
||||
|
||||
# log some additional metrics
|
||||
mlflow.log_metric('final_loss', loss.item())
|
||||
mlflow.log_param('learning_rate', learning_rate)
|
||||
mlflow.log_param('batch_size', batch_size)
|
||||
|
||||
# create a signature to record model input and output info
|
||||
input_schema = Schema([
|
||||
ColSpec('float', 'age'),
|
||||
ColSpec('float', 'mood level'),
|
||||
ColSpec('float', 'health level'),
|
||||
ColSpec('float', 'hungry level'),
|
||||
ColSpec('float', 'sexy level')
|
||||
])
|
||||
output_schema = Schema([ColSpec('float', 'fortune')])
|
||||
signature = ModelSignature(inputs=input_schema, outputs=output_schema)
|
||||
|
||||
# log trained model
|
||||
mlflow.pytorch.log_model(model, 'model', signature=signature)
|
||||
|
||||
# log training code
|
||||
mlflow.log_artifact('./train.py', 'code')
|
||||
|
||||
print('Completed.')
|
|
@ -1,21 +0,0 @@
|
|||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
data: data
|
||||
env: conda.yaml
|
||||
loader_module: mlflow.pytorch
|
||||
pickle_module_name: mlflow.pytorch.pickle_module
|
||||
python_version: 3.10.9
|
||||
pytorch:
|
||||
code: null
|
||||
model_data: data
|
||||
pytorch_version: 1.13.1
|
||||
mlflow_version: 1.30.0
|
||||
model_uuid: 1e929c95d90347419e3e0a49d5d783fd
|
||||
run_id: 128f833fc0a2426db86e5073db557a3e
|
||||
signature:
|
||||
inputs: '[{"name": "age", "type": "float"}, {"name": "mood level", "type": "float"},
|
||||
{"name": "health level", "type": "float"}, {"name": "hungry level", "type": "float"},
|
||||
{"name": "sexy level", "type": "float"}]'
|
||||
outputs: '[{"name": "fortune", "type": "float"}]'
|
||||
utc_time_created: '2023-02-23 01:38:39.421914'
|
|
@ -1,11 +0,0 @@
|
|||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.10.9
|
||||
- pip<=23.0.1
|
||||
- pip:
|
||||
- mlflow
|
||||
- cloudpickle==2.2.1
|
||||
- torch==1.13.1
|
||||
- tqdm==4.64.1
|
||||
name: mlflow-env
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue