Compare commits

...

2 Commits

Author SHA1 Message Date
deng e1f143736e update service data 2023-04-18 17:13:15 +08:00
deng 3c39c48242 script to optimize pytorch model on server 2023-04-18 17:13:05 +08:00
3 changed files with 145 additions and 0 deletions

47
optimize_model.py Normal file
View File

@ -0,0 +1,47 @@
# optimize_model.py
#
# author: deng
# date : 20230418
import shutil
from pathlib import Path
import torch
import mlflow
def optimize_pytorch_model(run_id: str) -> None:
"""Optimize Pytorch model on MLflow server, the optimized model will be sent back
Args:
run_id (str): mlflow run id
"""
download_path = Path('./model/downloaded_pytorch_model')
if download_path.is_dir():
print(f'Remove existed dir: {download_path}')
shutil.rmtree(download_path)
# Download Pytorch model to local file system
mlflow_model = mlflow.pytorch.load_model(f'runs:/{run_id}/model')
mlflow.pytorch.save_model(mlflow_model, download_path)
# Optimize model
model = torch.load(download_path.joinpath('data/model.pth'))
dummy_input = torch.randn(5)
torch.onnx.export(model, dummy_input, download_path.joinpath('data/model.onnx'))
# we can not call TensorRT on macOS, so imagine we get a serialized model
download_path.joinpath('data/model.trt').touch()
# Save optimized model to given run
with mlflow.start_run(run_id=run_id):
mlflow.log_artifact(download_path.joinpath('data/model.trt'), 'model/data')
print(f'Optimized model had been uploaded to server: {mlflow.get_tracking_uri()}')
if __name__ == '__main__':
mlflow.set_tracking_uri('http://127.0.0.1:5001')
optimize_pytorch_model(
run_id='f1b7b9a5ba934f158c07975a8a332de5'
)

View File

@ -0,0 +1,98 @@
# train.py
#
# author: deng
# date : 20230221
import torch
import torch.nn as nn
from torch.optim import SGD
import mlflow
from mlflow.models.signature import ModelSignature
from mlflow.types.schema import Schema, ColSpec
from tqdm import tqdm
class Net(nn.Module):
""" define a simple neural network model """
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(5, 3)
self.fc2 = nn.Linear(3, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
return x
def train(model, dataloader, criterion, optimizer, epochs):
""" define the training function """
for epoch in tqdm(range(epochs), 'Epochs'):
for batch, (inputs, labels) in enumerate(dataloader):
# forwarding
outputs = model(inputs)
loss = criterion(outputs, labels)
# update gradient
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log loss
mlflow.log_metric('train_loss', loss.item(), step=epoch)
return loss
if __name__ == '__main__':
# set hyper parameters
learning_rate = 1e-2
batch_size = 10
epochs = 20
# create a dataloader with fake data
dataloader = [(torch.randn(5), torch.randn(1)) for _ in range(100)]
dataloader = torch.utils.data.DataLoader(dataloader, batch_size=batch_size)
# create the model, criterion, and optimizer
model = Net()
criterion = nn.MSELoss()
optimizer = SGD(model.parameters(), lr=learning_rate)
# set the tracking URI to the model registry
mlflow.set_tracking_uri('http://127.0.0.1:5001')
mlflow.set_experiment('train_fortune_predict_model')
# start a new MLflow run
with mlflow.start_run():
# train the model
loss = train(model, dataloader, criterion, optimizer, epochs)
# log some additional metrics
mlflow.log_metric('final_loss', loss.item())
mlflow.log_param('learning_rate', learning_rate)
mlflow.log_param('batch_size', batch_size)
# create a signature to record model input and output info
input_schema = Schema([
ColSpec('float', 'age'),
ColSpec('float', 'mood level'),
ColSpec('float', 'health level'),
ColSpec('float', 'hungry level'),
ColSpec('float', 'sexy level')
])
output_schema = Schema([ColSpec('float', 'fortune')])
signature = ModelSignature(inputs=input_schema, outputs=output_schema)
# log trained model
mlflow.pytorch.log_model(model, 'model', signature=signature)
# log training code
mlflow.log_artifact('./train.py', 'code')
print('Completed.')

Binary file not shown.