# predict.py # # author: deng # date : 20230221 import torch import mlflow if __name__ == '__main__': # set MLflow server mlflow.set_tracking_uri('http://127.0.0.1:5000') # load production model model = mlflow.pytorch.load_model('models:/cls_model/production') # predict fake_data = torch.randn(10) output = model(fake_data) print(output)