# optimize_model.py # # author: deng # date : 20230418 import shutil from pathlib import Path import torch import mlflow def optimize_pytorch_model(run_id: str) -> None: """Optimize Pytorch model on MLflow server, the optimized model will be sent back Args: run_id (str): mlflow run id """ download_path = Path('./model/downloaded_pytorch_model') if download_path.is_dir(): print(f'Remove existed dir: {download_path}') shutil.rmtree(download_path) # Download Pytorch model to local file system mlflow_model = mlflow.pytorch.load_model(f'runs:/{run_id}/model') mlflow.pytorch.save_model(mlflow_model, download_path) # Optimize model model = torch.load(download_path.joinpath('data/model.pth')) dummy_input = torch.randn(5) torch.onnx.export(model, dummy_input, download_path.joinpath('data/model.onnx')) # we can not call TensorRT on macOS, so imagine we get a serialized model download_path.joinpath('data/model.trt').touch() # Save optimized model to given run with mlflow.start_run(run_id=run_id): mlflow.log_artifact(download_path.joinpath('data/model.trt'), 'model/data') print(f'Optimized model had been uploaded to server: {mlflow.get_tracking_uri()}') if __name__ == '__main__': mlflow.set_tracking_uri('http://127.0.0.1:5001') optimize_pytorch_model( run_id='f1b7b9a5ba934f158c07975a8a332de5' )