use DVC(Data Version Control) to manage a DL model training experiment
Go to file
deng 7a891969e0 init 2023-12-28 22:06:25 +08:00
.dvc init 2023-12-28 22:06:25 +08:00
env init 2023-12-28 22:06:25 +08:00
.dvcignore init 2023-12-28 22:06:25 +08:00
.gitignore init 2023-12-28 22:06:25 +08:00
README.md init 2023-12-28 22:06:25 +08:00
dvc.yaml init 2023-12-28 22:06:25 +08:00
evaluate.py init 2023-12-28 22:06:25 +08:00
params.yaml init 2023-12-28 22:06:25 +08:00
prepare.py init 2023-12-28 22:06:25 +08:00
train.py init 2023-12-28 22:06:25 +08:00

README.md

Abstract

Attempt to use DVC, a data versioning tool, to track model training with PyTorch, including data, trained model file, and used parameters. The data will be recorded and pushed to my private DVC remote via webdav🎁

Requirements

  • MacOS 13.3

Dirs

  • env
    • pt.yaml
      • conda env yaml to run this repo

Files

  • prepare.py
    • prepare materials for model training
  • train.py
    • try to train a small neural network
  • evaluate.py
    • evaluate trained model with some metrics
tags: DVC