train a simple Pytorch model to test the MLflow lib
Go to file
deng a0ac14d0f7 mlflow 1.30 -> 2.1 2023-03-01 14:56:27 +08:00
service mod service file structure 2023-03-01 14:55:51 +08:00
.gitignore ignore saved model 2023-02-22 16:27:19 +08:00
README.md add README 2023-02-21 14:20:12 +08:00
conda.yaml mlflow 1.30 -> 2.1 2023-03-01 14:56:27 +08:00
get_registered_model_via_rest_api.py test rest api 2023-02-26 05:10:28 +08:00
predict.py record model input&output, save model to file system 2023-02-22 16:25:26 +08:00
start_mlflow_server.sh mod service file structure 2023-03-01 14:55:51 +08:00
test_pytorch_m1.py mlflow 1.30 -> 2.1 2023-03-01 14:56:27 +08:00
train.py record model input&output, save model to file system 2023-02-22 16:25:26 +08:00

README.md

test_mlflow

測試使用MLflow紀錄Pytorch模型訓練以及從Model registry中拉取Production model進行推論。