train a simple Pytorch model to test the MLflow lib
Go to file
deng ec19042d0d update file description and reference 2023-03-01 17:13:17 +08:00
service mod service file structure 2023-03-01 14:55:51 +08:00
.gitignore ignore saved model 2023-02-22 16:27:19 +08:00
README.md update file description and reference 2023-03-01 17:13:17 +08:00
conda.yaml mlflow 1.30 -> 2.1 2023-03-01 14:56:27 +08:00
get_registered_model_via_rest_api.py test rest api 2023-02-26 05:10:28 +08:00
predict.py record model input&output, save model to file system 2023-02-22 16:25:26 +08:00
start_mlflow_server.sh mod service file structure 2023-03-01 14:55:51 +08:00
test_pytorch_m1.py update file description and reference 2023-03-01 17:13:17 +08:00
train.py record model input&output, save model to file system 2023-02-22 16:25:26 +08:00

README.md

Abstract

Try to use MLflow platform to log PyTorch model training, and pull production model from model registry to run inference⛩

Requirements

  • MacOS 12.5
  • Docker 20.10

Dir

  • service
    • House MLflow service data, including MLflow artifacts, backend store and model registry

Files

  • conda.yaml
    • conda env yaml to run this repo
  • start_mlflow_server.sh
    • a script to start MLflow server with basic configuration
  • test_pytorch_m1.py
    • a script to test PyTorch on Apple M1 platform with GPU acceleration
  • train.py
    • a sample code to apply PyTorch to train a small neural network to predict fortune with MLflow logging
  • predict.py
    • a sample code to call registered model to predict testing data and save model to local file system
  • get_registered_model_via_rest_api.py
    • a script to test MLflow REST api
tags: MLOps